
Apex Overview

Michael Freed (project lead) Pete Bonasso
Michael Dalal
Ellen Drascher
Will Fitzgerald
Dawn Fitzpatrick
Robert Harris
Reagan Jew

Outline

• Project Overview
- Applications Synopsis
- Development Approach
- System Components

• Execution Services and Agent Architecture
- Basic procedure language and semantics
- Complex Event Monitoring
- Multitask Management

• Sherpa Develop/Debug/Demo Environment
• Applications in more Detail

Applications

The Apex project provides autonomy technology

for a wide range of applications, each having:

• demanding AI functionality requirements

• low-medium barriers to acceptance of
autonomy technology

Autonomous Rotorcraft Project
 intelligent surveillance and reconnaissance

Mission Simulation Facility / REF
Riptide High-fidelity flight simulation

AuRA Wildfire detection, Earth Science

X-Plane Flight failure detection/recovery

Astronaut Procedure Guidance

CPM-GOMS HCI Analysis

VAMS Virtual Participants in HIL Simulations

MIDAS HCI Analysis

Dynamic Research Inc. Accident Analysis

Educational Outreach
Distributed on NASA website

Applications

Real
Robot

Simulated
Robot

Real
Human

Simulated
Human

Project Goals and Approach
Building/supporting many applications is a research and

tool development strategy…

Goals
• Versatility: >apps drive development of diverse capabilities

• Scalability: >apps justifies >effort enhancing system qualities

• Usefulness: >apps focuses effort on improving leverage

• Trust: >apps and >time “prove” software reliability

Approach
• Many applications; iterative refinement from lessons learned

• Prime directive: USABILITY
– Reduce time, expertise, inventiveness required to build application

– E.g. representation language, debugging support

Apex System Components

Intelligent Agent App Support Software Whole System

Smart Exec Modules
• PBR planner
• Monitoring
• Scheduler
• Periodicity control
• Primitives
• Specialists
• Autocallibration
• PDL verification

Human
• Submodels
• Behaviors

Building blocks
• Widget lib
• Geometry
• Worldbuilder

SimEngine

Interoperability

Sherpa (IDDE)
• viewers
• interaction UI
• diagrams

Install/Update
• Config
• Patch support
• Conversion
• Verification

Portability
• OS
• Lisp

Load system

Manual

Release Notes

Website
• download
• bug report
• docs
• external s/w

Sample apps

Test Framework

Basic procedure representation
and execution semantics

Procedure Definition Language
Basic Functionality

(procedure
 (index (hold-altitude using mcp))
 (profile right-hand)
 (step s1 (clear right-hand))
 (step s2 (find-loc alt-hold-button => ?loc))
 (step s3 (press-button ?loc right-hand)
 (waitfor (empty right-hand)
 (location alt-hold-button ?loc)))
 (step end (terminate)
 (waitfor (illuminated alt-hold-button))
 (step aux1 (restart ?self)
 (waitfor (resumed ?self))))

• concurrency
• reactivity
• abstraction/refinement
• contingency-handling
• multitask management

Procedure Definition Language
Usability Considerations

(procedure
 (index (hold-altitude using mcp))
 (profile right-hand)
 (step s1 (clear right-hand))
 (step s2 (find-loc alt-hold-button => ?loc))
 (step s3 (press-button ?loc right-hand)
 (waitfor (empty right-hand)
 (location alt-hold-button ?loc)))
 (step end (terminate)
 (waitfor (illuminated alt-hold-button))
 (step aux1 (restart ?self)
 (waitfor (resumed ?self))))

• readability
• compactness
• intuitiveness
• RT correspondence
• expressiveness

Basic execution semantics
(c

ol
or

 o
bj

-9
 r

ed
)

 (

te
rm

in
at

ed
 ta

sk
-5

)

(empty right-hand)

(location ahb ?loc)

(Illuminated ahb)

(resumed task-6)

&

E
ve

nt
 S

tr
ea

m

6:(hold-alt using mcp)

7:(clear right-hand)

8:(find-loc ahb)

9:(press ahb)

10:(terminate task-6)

11:(reset task-6)

Monitor Array Task Agenda

Task control

6:(hold-alt using mcp)

7:(clear right-hand)

8:(find-loc ahb)

9:(press ahb)

10:(terminate task-6)

11:(reset task-6)

Task Agenda
A TASK represents decisions about
(constraints on) how to transition to
world states prescribed by a plan.

Pending

Enabled

Ongoing

Suspended

Terminated

STATE

Understanding Apex Behavior
AI underpinnings

30

Event Monitoring Procedure-based Reactive
Planning

Dynamic Scheduling Periodicity Control

Complex Event Monitoring

Monitoring in Apex

(procedure
 (index (hold-altitude using mcp))
 (profile right-hand)
 (step s1 (clear right-hand))
 (step s2 (find-loc alt-hold-button => ?loc))
 (step s3 (press-button ?loc right-hand)
 (waitfor (empty right-hand)
 (location alt-hold-button ?loc)))
 (step end (terminate)
 (waitfor (illuminated alt-hold-button))
 (step aux1 (restart ?self)
 (waitfor (resumed ?self))))

The WAITFOR clause generates monitors that look for specified event patterns,
Detecting enabling conditions for both nominal and contingent tasks.

Basic event patterns
- Propositional forms
 (possibly with vars)
- Conjunctions
- Disjunctions

Enhanced Event Monitoring
More sophisticated monitoring approach desirable in many Apex domains

to support contingency detection, diagnosis and human intent inference.

History-dependent monitoring including time-series data analysis
 e.g. Altitude decreasing monotonically for time > k AND no altitude decrease commanded

 e.g. Valve closure command sent followed within 2 seconds by valve-closed signal received

 e.g. High turbulence interval overlaps loss of communication interval

Unification of querying and monitoring
 e.g. The temperature of instrument A previously fell or later falls below T

Execution-time coordination of monitoring with commanding
 e.g. Distance to car in front of me < d whose value depends on my target speed

Explicit constraints on data quality
 e.g. The temperature of A has held steady with measurements arriving at least 1/second

Uniform representation based on constraints, attributes, intervals

 * As needed to integrate with CAIP planner/schedulers such as Europa II

Enhanced Monitoring Ontology

Measurement input signal: attribute, object, val, timestamp

 e.g. (altitude aircraft-1 = 34000)

Estimation inferred measurement

Simple Episode abstraction of measurement history for att-obj pair

 e.g. (holding (alt aircraft-1) <time1> <time2>)

Complex Episode logical/temporal relations over simple episodes

 e.g. (in-order (holding…) (descending…))

Atomic Episode input signal denoting simple/complex episode

but not specifying underlying measurement history
 e.g. (landed aircraft-1)

Enhanced Monitoring Example

(procedure (warn-if-stove-too-hot-too-long ?stove)
 (log (temp <?stove>))
 (step s1 (say "Hey, the stove is too hot!")

(waitfor (:episode (temp <?stove>)
 :minimum-sample-interval P1S
 :stats (:mean (>= 200))
 :timing (:end (<= (+ (start-of +this-task+) P10M)))
 (:duration (:min P2M)))))

 (step term (terminate)
(waitfor ?s1)))

Complain if the stove is above 200 degrees for at least 2 minutes

A second example

Wait for an interval in which a specified aircraft starts at cruise altitude, descends
over a period starting after TASK-1 begins and lasting at least 5 minutes, ending
at approach altitude and approach speed.

(waitfor
 (:in-order

(:measurement m1 (altitude <?aircraft> = +cruise-altitude+))
(:episode e1 (altitude <?aircraft>)
 (:minimum-sample-interval P10s)
 (:timing (:start (> (start-of ?task-1))) (:duration (> P5m)))
 (:trend (:rate :increasing)))
(:and
 (:measurement m2 (altitude <?aircraft> = +approach-altitude+))
 (:measurement m3 (airspeed <?aircraft> = +approach-speed+)))))

Ranges: a picture(measurement (attribute ?obj = ?val)
 :value (:range minimum maximum)
 :timestamp (:range earliest latest)

Persistence picture

Regression picture

Episode syntax

1. (:episode [<tag>] (<attr> <obj/v>)
2. :minimum-sample-interval |

 :msi <duration-spec>
3. [:timing <timing-constraint>*]*
4. [:value <constraint>*]*
5. [:first-value <constraint>*]*
6. [:last-value <constraint>*]*
7. [:object <constraint>*]*
8. [:stats <stat-constraint>*]*
9. [:trend <trend-constraint>*]*)

Timing constraint

1. (:start <constraint>*) |

2. (:end <constraint>*) |

3. (:earliest-start <time-spec>) | (:es <time-spec>) |

4. (:latest-start <time-spec>) | (:ls <time-spec>) |

5. (:earliest-end <time-spec>) | (:ee <time-spec>) |

6. (:latest-end <time-spec>) | (:le <time-spec>) |

7. (:duration <constraint>*)

Episode picture

Understanding and Debugging Apex Behavior
A Big Challenge!

[5050-A] ..CREATING [TASK5735 (MAP EYE-TARGET [VOF:{DL603}] TO HAND-TARGET) {NIL}]

[5050-A] ..CREATING [TASK5736 (COMPUTE-POINTER-ICON-DISTANCE [VOF:{DL603}] ?POINTER) {NIL}]

[5050-A] ..CREATING [TASK5737 (SHIFT-GAZE-TO [VOF:{DL603}]) {NIL}]

[5050-A] ..CREATING [TASK5738 (FIND MOUSE POINTER) {NIL}]

[5050-A] ..CREATING [TASK5739 (GRASP LEFT MOUSE) {NIL}]

[5050-A] TESTING preconditions for

[TASK5739 (GRASP LEFT MOUSE) {PENDING}].... SATISFIED

[5050-A] SELECTING procedure for TASK5739... => (GRASP ?HAND ?OBJECT)

[5050-A] ENABLING [TASK5739 (GRASP LEFT MOUSE) {ENABLED}]

[5050-A] EXECUTING [TASK5739 (GRASP LEFT MOUSE) {ENABLED}]

[5050-A] ..CREATING [TASK5745 (TERMINATE ?SELF SUCCESS >> NIL) {NIL}]

[5050-A] ..CREATING [TASK5746 (RESET ?SELF) {NIL}]

[5050-A] ..CREATING [TASK5747 (SIGNAL-RESOURCE LEFT (GRASP MOUSE)) {NIL}]

[5050-A] ..CREATING [TASK5748 (CLEAR-HAND LEFT) {NIL}]

[5050-A] ..CREATING [TASK5749 (GRASP-STATUS LEFT MOUSE) {NIL}]

[5050-A] ENABLING [TASK5747 (SIGNAL-RESOURCE LEFT (GRASP MOUSE)) {ENABLED}]

[5050-A] EXECUTING [TASK5747 (SIGNAL-RESOURCE LEFT (GRASP MOUSE)) {ENABLED}]

[5050-S] --> LEFT ((GRASP MOUSE)) TASK5739

[5050-C] (TERMINATE [TASK5747 (SIGNAL-RESOURCE LEFT (GRASP MOUSE)) {ENABLED}] SUCCESS)

[5050-A] ENABLING [TASK5737 (SHIFT-GAZE-TO [VOF:{DL603}]) {ENABLED}]

[5050-A] EXECUTING [TASK5737 (SHIFT-GAZE-TO [VOF:{DL603}]) {ENABLED}]

Debugging Monitoring Behavior

• What tasks executed and
 why? Which did not?
• Why didn’t the task start
 when I expected?
• Why did trigger when I
 didn’t expect it to?
• Did the “usual” thing
 happen or something new?
• etc…

Thousands of lines of trace: not so helpful

Understanding and Debugging Apex Behavior
 Monitoring and querying

Multitask Management

Multitask Management
The term Multitask Management covers a range of
capabilities for coordinating potentially interacting
tasks, especially those arising from separate procedures.

• Postpone transition to interrupting task until
 good stopping point (finished typing sentence)
• Conditionally invoke transition behavior to reduce
 cost/risk of interruption (pull over car to read map)
• Insert compatible task into unexpected slack time
 in resource demanding task (put on coat at red
 light)

Examples

Aspects of multitask management
addressed in Apex

• Concurrency control
• Rational interruption and resumption
• Robust interleaving
• Efficient use of resources

Concurrency Control
PDL Idioms

Converge

(procedure
 (index (do-it))
 (step s1 (do-A)
 (step s2 (do-B)
 (step s3 (do-C)
 (waitfor ?s1 ?s2)
 (step s4 (terminate)
 (waitfor ?s3)))

 Race

(procedure
 (index (do-it))
 (step s1 (do-A)
 (step s2 (do-B)
 (step s3 (do-C)
 (waitfor ?s1)
 (waitfor ?s2))
 (step s4 (terminate)
 (waitfor ?s3)))

Synchronize

(procedure
 (index (do-it))
 (step s1 (do-A))
 (step s2 (do-B)
 (waitfor (started ?s1)))
 (step s3 (terminate)
 (waitfor ?s1 ?s2)))

Rational Interruption and Resumption

Interruptions arise from resource conflicts
• resource requirements from PDL profile clause

• interrupting tasks with duration below specified
 tolerance value not considered in conflict

Interruptions resolved based on priority heuristic

b
b

bb U
I

SSI
U

SICpriority)
1

1
1)(()

1
1

1(max +
−−+

+
−+=

(profile <resource-name> [tolerance] …)

Robust Interleaving

Successful execution-time task interleaving requires managing
task transitions – e.g. safing a task for interruption, maintaining
its viability while inactive and restoring preconditions to resume

(procedure
 (index (fly-cruise-leg using manual-control))
 (step s1 (maintain-altitude)
 (interrupt-cost 5))

...
 (step s12 (handoff-to-pilot-not-flying)
 (priority (importance 10) (urgency 10)))
 (waitfor (interrupted ?self)))
 (step s13 (monitor-pilot-not-flying)
 (waitfor (completed ?s12)))
 (step s14 (request-role-pilot-flying)
 (waitfor (resumed ?self)))
 ...)

Efficient Use Of Resources

• Combine redundant tasks

• Exploit slack time in use of limited resources
� Tolerance value specifies degree of “protection”

over temporarily idle resources
� Priority-based on-line scheduler attempts to

maximize use of resources

(merge <condition> [<task-pattern>])

Sherpa
Integrated Debugging and Demonstration Environment

Browser interaction model for viewing data
forward/back buttons URL focal object All data objects as hypertext

Switch between 6 ways to
 view a data object

Inspect
Trace
Diagram
PERT (schedule)
Agenda (tree)
PDL (template)

Main Toolbar

Object Tree
(navigation)
Window

Application
Status Bar

Main View
Window

Communication
Status Indicator

Sherpa Trace View

Important Features
• Interactive filtering by
 event type, time, object
• Preset show levels
• Runtime filter control
• Adv. pause/step control
• Find/highlight/filter controls
• Table controls such as
 column sorting
• Easy output to analysis
 tools such as Excel

Sherpa Agenda View

Important Features
• Click access to other task
 views: PERT, inspect,
 procedure, monitors
• Searchable
• Time data provides points
 of reference in trace

Sherpa PERT view

Shows runtime micro-scheduling

Important Features
• Switch to Gantt chart
• View controls incl. zoom
• Computes critical path
• Color code for common parent
• Shows inherited dependencies
• Effective printing to b/w printer
• Output to Powerpoint

Sherpa Diagram View (Vector)

Allows user to view spatial data
• layout
• plotted movement data
 (not yet implemented)

Important Features
• Click access to other object
 views: inspect, trace, diagram
• Printer support

Sherpa Diagram View (Image-mapped Graphic)

Facilitates demonstration

Facilitates exploration of
application model

Provides way to identify
part names, secondary
navigation

Sherpa Inspect View

For debugging, easy access to
internal representation of all objects

Important Features
• Click access to any other view
 of focal object
• Various controls over how much
 information is shown

Apex Applications

1. Army/NASA Autonomous Rotorcraft Project
2. Autonomous Robust Avionics (fixed-wing UAV)
3. Mission Simulation Facility (rover requirements elicitation)
4. Virtual Airspace Modeling and Simulation
5. MIDAS human crewstation analysis
6. HCI performance analysis using CPM-GOMS
7. Astronaut behavior modeling
8. Simulation testbed: Autonomous Underwater Robot
9. Simulation testbed: X-Plane
10. Other: educational outreach and external user support

Army/NASA Autonomous Rotorcraft Project

OBJECTIVE: versatile, practical and inexpensive airborne
observation platform effective for a broad range of missions

The Surveillance Problem
Example Scenario

Area of operations

Valuable Assets
• docks
• warehouses
• lighthouse
• orchard tract

Risk: any asset can start on fire at any time

UAV Goal: do a good job detecting fires
and mitigating losses

What does it mean to do a good job at surveillance in this kind of scenario?

The Surveillance Problem
 Goal: minimize expected cost of ignorance over mission

Example

()0)(0 1
1

2
)(cost

21
cm

e
cd lldk −⎟

⎠

⎞
⎜
⎝

⎛ −
+

+= ++−

ECI _ (t1, t2, a, k, m) = dt
e

mae
ttk

t

tt

at)1
1

2
(

)(2

2

1

−
+ −−

=

−∫

Probability of occurrence (pdf)

Cost if it occurs

p(t) = ae-at

Expected cost of ignorance [t1 t2]

exponential

sigmoid

Mission-ECI = ∑∑
intervalstargets

ECI _
(ti-1, ti)

minimize this

Autonomous Rotorcraft Project
Autonomy Software Architecture

Execution Layer
(High-level control)

Deliberative Layer
(planning, scheduling)

Skill Layer
(sensing, actuation)

A
pe

x

Tactical sensor positioning
Human interaction management
Monitoring and anomaly-handling
Obstacle avoidance path planning
Flight patterns

3-Tier Agent Architecture

Surveillance scheduling
 (multitask management)

Flight controls

Autonomous Robust Avionics
Initial mission (complete): simulated wildfire detection and investigation
Future mission: fly real Predator B in planetary science analog mission

Requirements Elicitation Facility (REF)

VIZ

VIZROAMS (Rover model)

HLA
Mission Simulation Facility

Rover
Proxy

Scenario
Manager

ASA Sherpa

Apex

Michael Freed (PI)
Mark Drummond
David Stavens

Virtual Airspace Modeling and Simulation
Pseudo Air Traffic Controllers for large engineering sims

Roger Remington (PI)
Seungman Lee
Ujwala Ravinder

Sandy Hart (PI)
Peter Jarvis
Michael Dalal

MIDAS
Simulation/Analysis of Human-Crewstation Performance

Astronaut behavior modeling
Space Shuttle Ascent Procedure

Rob McAnn (PI)
Michael Matessa

HCI Performance Analysis
predicting human task durations with CPM-GOMS

Michael Freed
Bonnie John
Michael Matessa
Roger Remington
Alonso Vera

Autonomous Underwater Robot
 Simulation Testbed

Mission: Long duration monitoring of
deep ocean phenomena, i.e.,
hydrothermal vents.

 Tasks
 Vent detection via salinity/currents
 Thermal, biological, effluent sampling
 Data up-linking
 IVHM
 Power management

Equipment
-6 DoF thrusters, gyro-stabilizers, IMUs
- Sonar-based obstacle detection system
- 6 DoF manipulators/w force-torque wrist
- 1 MHZ laser sighted, pencil-beam sonar
- Stereo color cameras
- Thermal, salinity, current probes

Pete Bonasso (PI)

X-Plane
Simulation Testbed

Robert Harris
Michael Freed

• 100s of aircraft models and airport
• rich geography and airspace model

Mission: nominal flight in U.S.
airspace in varied conditions,
with diverse aircraft and flight
goals.

Research emphasis: identiyfing,
isolating and recovering from
failure. X-Plane supports > 30
aircraft failure modes.

Educational Outreach
and Support for External Users

Apex used in classrooms to teach autonomy or HCI analysis (>100 students)
• University of Maryland (desJardins)
• Stanford (Freed)
• CMU (John)
• Hong Kong U (Vera)
• George Mason (Boehm-Davis)

Apex used for research or applied projects
• CMU (Sycara, John)
• Stanford (Peters)
• Dynamic Research Inc. (Sauer)

Extra

Smart Executive Functionality

Failures

Interruptions

Opportunities

Side Effects

Serendipity

Instability

Synergies

Glitches

Slack

Deterioration

Robust execution mechanisms should achieve goals and maintain safety
despite changing conditions, unexpected outcomes, time-pressure and
other factors that undermine planned and routine behavior.

Closed-Loop Control

Contingency Handling

Procedural Reasoning

Fast Replanning

Smart Monitoring

Multitask Management

Resource Projection

Synchronization

Tactical Plan Repair

Auto-Callibration

Environment Executive

Procedure-based Control

Procedure-based control: Procedural execution methods make use of a
human-fabricated library of stored plans, refining, composing and adapting
them on the fly to support coordinate pursuit of multiple goals. Important
features of procedural approaches include scalability to complex,
time-pressured control problems and the ease with which they are developed
and explained, an important factor in generating stakeholder trust in
autonomous systems.

Procedural methods are particularly appropriate for systems operating in
proximity to humans where predictability and adherence to standard operating
procedures is especially important. Key research emphases include integrated
development environments and simulation-based validation.

Procedures are represented in a language that should be compatible with the
output of broad class of planners, but should also include features not supported
by any planner (to be used in hand-crafted plans, esp. for control)

Hardware - Yamaha RMAX

• 184 lb GW, 65 lb payload

• 3 m rotor diameter

• One hour endurance

• $86,000

Avionics Payload
• Crossbow IMU
• Radio modem
• PC104+ flight computer
• PCI video computer
• Sonar
• Differential GPS
• Vibration Sensors
• Weight-on-wheels sensors

Vibration-isolated stub wing
• Stereo pair mono cams
• Actuated color camera
• Actuated video camera

Development Process

• Periodic new releases
 - current distributed version: 2.4
 - upcoming: 3.0
• Module leads handle preplanning
• PI leads planning
• Customer input central at
 all stages
• Testing/doc phase precedes
 each release

Freed, M. and Dahlman, E. (2002) Requirements for inferring the intensions of multitasking agents. In Working Notes of the AAAI Fall Symposium
on Intent Inference, Falmouth, Massachusetts.

John, B. E., Vera, A. H., Matessa, M., Freed, M., and Remington, R. (2002) Automating CPM-GOMS. In Proceedings of CHI’02: Conference on Human
Factors in Computing Systems. ACM, New York, pp. 147-154.

Freed, M. and Vera, A. (2001) Simulating Human Agents. AI Magazine, 22(3), p. 115.

Freed, M. (2000) Reactive Prioritization. Proceedings 2nd NASA International Workshop on Planning and Scheduling for Space. San Francisco, CA.

Freed, M. and Remington, R. (2000) Making Human-Machine System Simulation a Practical Engineering Tool: An APEX Overview. In
Proceedings of the 2000 International Conference on Cognitive Modeling. Groningen, Holland.

Freed, Michael and Remington, R. (2000) GOMS, GOMS+ and PDL. In Working Notes of the AAAI Fall Symposium on Simulating Human
Agents. Falmouth, Massachusetts.

Freed, Michael. (2000) Heuristic management of execution-time task conflicts. In Proceedings of the 2000 World Automation Congress. Maui, HI.

Freed, M., Bear, T., Goldman, H., Hyatt, G., Reber, P., Sylvan, A. and Tauber, J. (2000) Towards More Human-Like Computer Opponents. In Working
Notes of the AAAI Spring Symposium on Artificial Intelligence and Interactive Entertainment, 22-26

Freed, M. (1998) Managing multiple tasks in complex, dynamic environments. In Proceedings of the 1998 National Conference on Artificial
Intelligence.
Madison, Wisconsin.

Freed, M. and Remington, R. (1998) A conceptual framework for predicting errors in complex human-machine environments. In Proceedings of the
1998 Meeting of The Cognitive Science Society. Madison, Wisconsin.

Freed, M., Shafto, M., and Remington, R. (1998) Using simulation to evaluate designs: The APEX approach. In Chatty, S. and Dewan, P., editors,
Engineering for Human-Computer Interaction, chapter 12. Kluwer Academic

Freed, M. and Remington, R. (1997) Managing decision resources in plan execution. Proceedings of the Fifteenth International Joint Conference on
 Artificial Intelligence. Nagoya, Japan.

Freed, M. and Shafto, M. (1997) Human System Modeling: Some Principles and a Pragmatic Approach. Proceedings of the 4th International
Workshop on the Design, Specification, and Verification of Interactive Systems. Granada, Spain.

Van Selst, M. and Freed, M. (1997) Using APEX to model anticipated human error: analysis of a GPS navigational aid. Proceedings of the Seventh
International Conference on Human-Computer Interaction. San Francisco, California.

Freed, M. (1996) Using the RAP system to simulate human error. Proceedings of the 1996 AAAI Fall Symposium on Plan Execution: Problems and
Issues, pp.52-58, Cambridge, MA.

Freed, M. and Johnston, J. (1995) Simulating Cognition in the Domain of Air Traffic Control. Proceedings of 1995 Spring Symposium on Representing
Mental States and Mechanisms (eds. Cox, M. and Freed, M.), Palo Alto, CA.

Apex Publications (through 2002)

